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Abstract:   

This paper discusses a prey-predator model with reserved area. The feeding rate of consumers (predators) 

per consumer is considered to be Beddington –DeAngelis type.The Beddington –DeAngelis Functional 

response but contains an extra term describing mutual interference by predators. In order to get more 

realistic models,refuge and linear harvesting have been incorporated. First,we find the existence of all 

possible equilibrium points and study the local stability properties of the proposed non-delayed model.In 

addition,for the non-delayed model,we perform the Hopf-bifurcation analysis around the interior 

equilibrium point based on the bifurcation parameters. Finally,numerical simulations are provided to 

verify the effectiveness of the proposed theoretical results.  

Keywords:  Predator harvesting, Equilibrium point, Beddington –DeAngelis Functional response, 

Stability, Hopf bifurcation. 

 

1.Introduction: 

   Population biology is one of the interesting and applicable interdisplinary branches connecting 

Mathematics and biology.The origin and theory of this particular kind of dynamical system is dueTo 

pioneer work of Lotka. The intuitive and experimental observations also infer that the decrease  in feeding 

rate of consumers(predators)per unit consumer is due to mutual inference among Predators[1-4]. The 

inclusion of interference among predators differentiates Beddington-DeAngelis  Functional response from 

Holling type II Functional response. The Lotka-Volterra type predator- prey model with the Beddington-

DeAngelis  Functional response has been proposed and well studied.Motivated by these facts, we first 

propose A deterministic model with Beddington DeAngelis  Functional response along with the harvesting 

factor of prey induced by predators and refuge. In the ecosystem,Predator and prey interaction is one of 

the most fundamental factors in shaping community structure and maintaining ecological  diversity[5-
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9].To capture the effects of predators on prey populations, two different approaches exist. 

One is the consumption of prey (direct effect)by predators which is easier to observe in the field and 

has been the main focus of mathematical ecology.In general, mathematical models are classified into two 

main types namely ecology models and epi- demiological models. In ecological models studying the 

interactions between populations of a particular community are studied. Epidemiology models mean 

studying the spread of diseases between animals and humans[10-14].It is increasingly crucial to do research 

on the dynamics of illness within ecological systems. The dynamical issues involved in the prey-predator 

mathematical model system can appear easy at first. Mathematical models are essential for understanding, 

studying, and investigating the expanse and management of infectious diseases . The effects of infectious 

diseases in a prey-predator system have been extensively studied[15-19].In the eco-epidemiological 

model, the infection of prey is highly significant. Lotka and Volterra's predator-prey models are 

considered important works in modern mathematical ecology in coupled systems of non-linear differential 

equations. Epidemiological models have attracted a lot of interest since Kermack-Mckendrick's pioneering 

work on SIRS because functional response is one of the most crucial elements in the prey-predator 

population.In environment nature,predators not only affect prey species through direct predation but also 

induce refuge.This refuge alters the behavior and reproductive patterns of prey individuals,impacting their 

survival and population dynamics.The refuge induced by by predators can lead to a reduction in the 

reproduction rate of prey.They may avoid open habitats the growth and sustainability of the prey 

population.In mathematical ecology,numerous species are living in ecosystems which engage in 

interactions that are influenced by various factors.These interactions can arise from defence 

mechanisms,response to natural disasters and human exploitation. As a result, maintaining a sustainable 

balance for the species within the ccosystem is cruial for long-term viability and ecological stability.The 

interplay between prey and predators are considered using the Beddington –DeAngelis Functional 

response.The feeding rate in the Holling type-II functional response decrease as the density of prey 

increases.However, the Beddington –DeAngelis Functional response considers both the effect of prey 

density on predators feeding rate and the impact of interference among predators depending on their 

density[20-23].By considering both of these factors,the Beddington –DeAngelis Functional response 

provides a more realistic model of the intricate relationships between predators and prey within the 

ecosystems. 

   In population dynamical and ecosystem,harvesting with refuge in a prey-predator system introduvces a 

behaviroral aspect that can influence the dynamics of an ecosystem.A predator-prey fishery model with 

stage structure and imprecise harvesting,considering interval uncertainty and the effects of refuge from 

the predator population on the prey.Also,they evaluated optimal harvesting strategy using Pontrygin’s 

maximal principle in an uncertain and imprecise setting.The proposed imprecise model formulation 

included variables related to refuge influence on prey population growth rate and the harvesting of prey 

and juvenile predator populations. Intially,they analyzed the model without delays to validate the 

positivity and boundesness of the solution[24-26].Further,they calculated the normal form of Hopf 

bifurcation to ascertain the direction and stability of bifurcated periodic solutions. Their finding were 

further supported through numerical simulations. 

The paper is organized as follows: A mathematical model is developed in Section 2. Section 3 We discuss 

the positivity and boundedness of solutions. The stability analysis of the suggested model has been 

investigated in Section 4. For the proposed of Hopf Bifurcation in Section 5.In Section 6, numerical 

simulations of the suggested model are examined. Finally, the conclusion of the paper and the biological 

implications of our mathematical results are found in Section 7. 
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2. Mathematical Model Formation: 

In this chapter ,we study the dynamics of a three species food web Eco-epidemiological model with 

Beddington DeAngelis Functional response with refuge and predator harvesting infected prey species of 

the form: 

    
dX

dT
= r1X (1 −

X+Y

K
) − λYX −

α1XZ

a1+uX+vZ
 ,                     

                                     
dY

dT
= λYX − d1Y −

b1(1−m)YZ

a1+(1−m)Y
 ,      

                                      
dZ

dT
= −d2Z +

Cb1(1−m)YZ

a1+(1−m)Y
+

Cα1XZ

a1+uX+vZ
 −HEZ                  (1)               

                                            .                            
Subject to initial values 𝑋(0) ≥ 0, 𝑌(0) ≥ 0 and 𝑍(0) ≥ 0. 

 

Table 1: Biological representation of system (1) parameters 

Parameters Biological Representation Units 

X Susceptible prey Number per unit area 

(tons) 

Y Infected prey Number per unit area 

(tons) 

Z Predator Number per unit area 

(tons) 

𝑟1 Intrinsic growth rate of prey Per day (𝑡−1) 
K Carrying capacity of 

environment 

Number per unit area 

(tons) 

𝛼1 Predation rate of 

Susceptible prey 
Per day (𝑡−1) 

𝑏1 Predation rate of Infected 

prey 
Per day (𝑡−1) 

𝑎1 Half saturation constant 𝑚 

𝐶 Conversion rate of prey and 

predator 
0 ≤ 𝐶 ≤ 1 

𝑑1 Death rate of prey Per day (𝑡−1) 
𝑑2 Death rate of predator Per day (𝑡−1) 
𝜆 Infection rate Per day (𝑡−1) 

H  The catchability coefficient 

of the predator 
Per day (𝑡−1) 

E Harvesting effort Per day (𝑡−1) 
 

          To reduce system (1) parameters, adjust variables 𝑥 =
𝑋

𝐾
, 𝑦 =

𝑌

𝐾
, 𝑧 =

𝑍

𝐾
and consider dimension time 

𝑡 = 𝜆𝐾𝑇. Now, we apply the following transformations: 

 

                  𝑟 =
𝑟1

𝜆𝑘
, 𝛼 =

𝛼1

𝜆𝐾
, 𝑎 =

𝑎1

𝜆𝐾
, 𝑑 =

𝑑1

𝜆𝐾
, 𝜃 =

𝑏1

𝜆𝐾
,    𝛿 =

𝑑2

𝜆𝑘
, h =

𝐻𝐸

𝜆𝑘
,    

 

The equation (1) can be expressed in a non-dimensional form using the above transformations. 
dx

dt
 = rx(1 − x − y) − xy −

αxz

a + ux + vz
 

                                                  
dy

dt
 = yx − dy −

θ(1−m)yz

a+(1−m)y
                                             (2)                                       
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+ 

+ 

                                             
dz

dt
= −δz +

c(1−m)θyz

a+(1−m)y
+

cαxz

a+ux+vz
− hz 

 

Subject to initial values 𝑥(0) ≥ 0, 𝑦(0) ≥ 0 and 𝑧(0) ≥ 0. 

 

Solutions’ positivity and Boundedness 

This section explores the system’s positivity and boundedness solution (2) 

 

Positivity of solutions 

THEOREM 3.1 All the solutions of (2) are positive in R3 

Proof. Since x(0) ≥ 0, y(0) ≥ 0, and z(0) ≥ 0. hence the system (2.2) becomes, 

  𝑥(𝑡) = 𝑥(0)exp (∫ [𝑟(1 − 𝑥 − 𝑦) − 𝑥𝑦 −
𝛼𝑧

𝑎+𝑢𝑥+𝑣𝑧

1

0
]ds)≥ 0 

 𝑦(𝑡) = 𝑦(0)exp (∫ [yx − dy −
θ(1−m)yz

a+(1−m)y

1

0
]ds)≥ 0 

𝑧(𝑡) = 𝑧(0)exp (∫ [
1

0
− δz +

c(1−m)θyz

a+(1−m)y
+

cαxz

a+ux+vz
− hz]ds)≥ 0] 

then the solutions of (2) are non-negative. 

THEOREM 3.2 All the solutions of (2) are bounded in R3 

Proof: Since x(t),y(t),z(t) be any solution of the system (2) with positive initial conditions,since 

                                   
𝑑𝑥

𝑑𝑡
≤ 𝑟𝑥(1 − 𝑥) 

We have, 

 lim sup t → ∞ x(t) ≤ 1, 

let w=x+y+z 

                         
𝑑𝑤

𝑑𝑡
=
𝑑𝑥

𝑑𝑡
+
𝑑𝑦

𝑑𝑡
+
𝑑𝑧

𝑑𝑡
 

                               =     𝑟𝑥(1 − 𝑥 − 𝑦) − 𝑥𝑦 −
𝛼𝛼𝑧

𝑎+𝑢𝑥+𝑣𝑧
+yx − dy −

θ(1−m)yz

a+(1−m)y
− δz +

                                      
c(1−m)θyz

a+(1−m)y

cαxz

a+ux+vz
− hz 

=  𝑟𝑥(1 − 𝑥 − 𝑦) − 𝑑𝑥 −
(1 − 𝑐)𝛼𝑥𝑧

𝑎 + 𝑢𝑥 + 𝑣𝑧
− ℎ𝑧 −

(1 − 𝑐)𝜃𝑦𝑧

𝑎 + 𝑧
− 𝛿𝑧 

                              ≤ 𝑟𝑥(1 − 𝑥 − 𝑦) − 𝑑𝑦 − ℎ𝑧 − 𝛿𝑧        since(c<1) 

                                    ≤
𝑟

4
− ℎ𝑥 − 𝑑𝑦 − 𝛿𝑧                  since (max(rx(1-x)= 

𝑟

4
) 

                               ≤
𝑟

4
− 𝛽𝑤                                             where 𝛽 = min (𝛿, ℎ) 

              
𝑑𝑤

𝑑𝑡
+  𝛽𝑤 ≤

𝑟

4
 

Using the differential inequality theory, then 

0 < 𝑤 ≤
𝑟

4𝛽
(1 − 𝑒𝑥𝑝−𝛽𝑡)+𝑤(𝑥0, 𝑦0, 𝑧0,) 𝑒𝑥𝑝

−𝛽𝑡                                

For n → ∞,we have 0 < 𝑤 ≤
𝑟

4𝛽
. 

Hence all the solutions of (2) is bounded for all the region, for 𝜀 > 0, then, 

Ω = 

 

(x, y, z) ∈ R3 ; x + y + z ≤
𝑟

4𝛽

  
+ ϵ)

  

Equilibrium points and Stability analysis: 

    This section discusses the following possible equilibrium points of system (2). 

• The trivial equilibrium point is 𝐸0(0,0,0). 
• The infected free and predator free equilibrium point is 𝐸1(1,0,0).. 
• The predator free equilibrium point is 𝐸3(𝑥, 𝑦, 0), 
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Where 𝑥 = 𝑑 and 𝑦 =
𝑟(1−𝑑)

𝑟+1
. 

• The interior equilibrium point is 𝐸∗(𝑥∗, 𝑦∗, 𝑧∗) 
 

       where  y*=
𝑎(𝑎(𝛿+ℎ)(𝑥−𝑑)+(1−𝑚)((𝛿+ℎ)−𝑐𝛼)𝑥∗

(1−𝑚)((𝑐𝛼𝑥∗+(𝑐𝜃−(𝛿+ℎ))(𝑎+𝑥∗))
 

                                      z*
=
𝑎𝑐(𝑥∗−𝑑)(𝑎+𝑥∗)+(1−𝑚)(𝑟−𝑟𝑥∗)𝑐

(1−𝑚)((𝑐𝛼𝑥∗+(𝑐𝜃−(𝛿+ℎ))(𝑎+𝑥∗))
 

and  𝑥∗ is the only positive root of the equation  for a quadratic Equation 

𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 0, 
 

where          𝐴 = 𝑟(cα + cθ − (δ + h)), 

                                 𝐵 = (𝑐𝜃 − (δ + h))(−𝑟 + 𝑎𝑟) − 𝑟𝛼𝑐 + 𝑎((δ + h) + (𝑑 − 𝑐𝛼)𝑟), 

     𝐶 = −𝑎((𝑟)(𝑐𝜃 − (δ + h)) + (𝑐𝛼𝑑 − 𝑎𝑑(1 + 𝑟))). 

 

4.1 Stability Analysis: 

For the purpose of local stability analysis around various equilibrium points, we now want to compute the 

Jacobian matrix. The Jacobian matrix at an arbitrary point (𝑢, 𝑣, 𝑤) is given by 

𝐽(𝑥, 𝑦, 𝑧) = (

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

) 

 

 

𝑎11 = 𝑟(1 − 2𝑥) − 𝑖(𝑟 + 1) −
𝛼𝑎𝑧

(𝑎+𝑢𝑥+𝑣𝑧)2
 , 𝑎12 = −𝑥(𝑟 + 1),  𝑎13 = −

𝛼𝑥

𝑎+𝑢𝑥+𝑣𝑧
 

𝑎21 = 𝑦, 𝑎22 = 𝑥 − 𝑑 −
𝑎𝜃𝑧

(𝑎 + 𝑦)2
, 𝑎23 =

−𝜃𝑦

𝑎 + 𝑦
 ,  

𝑎31 =
𝛼𝑐𝑎𝑧

(𝑎+𝑢𝑥+𝑣𝑧)2
,   𝑎32 =

𝑎𝑐𝜃𝑧

(𝑎+𝑦)2
,    𝑎33 = 𝛿 +

𝑐𝜃𝑦

𝑎+𝑦
 + 

𝑐𝛼𝑥

𝑎+𝑢𝑥+𝑣𝑧
− ℎ 

Theorem: 1 

 𝐸0(0,0,0) is the trivial equilibrium point, which is saddle. 

Proof: 

           The Jacobian matrix at 𝐸0 is given by 

𝐽 (𝐸0) = (
𝑟 0 0
0 −𝑑1 0
0 0 −δ − h

) 

The eigenvalues are 𝜆1 = 𝑟, 𝜆2 = −𝑑1 and 𝜆3 = −δ − h 

Hence, the equilibrium point 𝐸0 is saddle. 

Theorem : 2 

  𝐸1(1,0,0)  is the infected free and predator free equilibrium point which is unstable. 

Proof: 

           The Jacobian matrix at 𝐸1 is given by 

𝐽 (𝐸1) =

(

 
 
−𝑟 −(𝑟 + 1)

−𝛼

𝑎 + 1
0 1 − 𝑑 0

0 0  −𝛿 +
𝑐𝛼

𝑎 + 1
−  ℎ

)

 
 

 

The eigenvalues are 𝜆1 = −𝑟, 𝜆2 = 1 − 𝑑 and 𝜆3 = −𝛿 +
𝑐𝛼

𝑎+1
−  ℎ 

Due to numerical simulation table values, 1 − 𝑑 is positive. 
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Hence, the equilibrium point 𝐸1 is unstable. 

Theorem: 3 

   𝐸2(𝑥, 𝑦, 0) is the predator free equilibrium point which is locally asymptotically stable 

    if 𝑑 > 𝑐(𝛼 + 𝜃). 
Proof: 

           The Jacobian matrix at 𝐸2 is given by 

𝐽 (𝐸2) = (

𝑏11 𝑏12 𝑎13
𝑏21 𝑏22 𝑏23
𝑏31 𝑏32 𝑏33

) 

 

𝑏11 = 𝑑, 𝑏12 = (−1 − 𝑟)𝑥, 𝑏13 = −
𝛼

𝑎 + 𝑢𝑥 + 𝑣𝑦
, 

𝑏21 = 𝑥, 𝑏22 = 0, 𝑏23 =
𝜃𝑥

𝑎 + 𝑢𝑥 + 𝑣𝑦
, 

𝑏31 = 0, 𝑏32 = 0, 𝑏33 =
𝑐𝛼𝑥

𝑎 + 𝑢𝑥 + 𝑣𝑦
− 𝑑 +

𝑐𝜃𝑦

𝑎 + 𝑣𝑦
. 

The characteristic equation of the above Jacobian matrix is provided by 

𝜆3 + 𝑋𝜆2 + 𝑌𝜆 + 𝑍 = 0. 
Where,  

𝑋 = −𝑏11 − 𝑏22, 
                                                               𝑌 = −𝑏31𝑏13 + 𝑏22𝑏11, 
                                                               𝑅 = 𝑏13𝑏31𝑏12. 
According to Routh-Hurwitz criteria, 

Hence, 𝐸2 is locally asymptotically stable. 

Theorem: 4 

         The interior equilibrium point 𝐸∗(𝑥∗, 𝑦∗, 𝑧∗) is locally asymptotically stable. 

Proof: 

The Jacobian matrix at 𝐸∗ is given by 

𝐽 (𝐸∗) = (

𝑔11 𝑔12 𝑔13
𝑔21 𝑔22 𝑔23
𝑔31 𝑔32 𝑔33

) 

Where , 

𝑔11 =
−𝑥∗(−𝑟 + 𝑎𝑟 + (1 + 𝑟)𝑦∗ + 2𝑟𝑥∗)

𝑎 + 𝑢𝑥∗ + 𝑣𝑦∗
, 𝑔12 = −𝑥

∗(𝑟 + 1), 𝑔13 = −
𝛼𝑥∗

𝑎 + 𝑢𝑥∗ + 𝑣𝑦∗
, 

𝑔21 = 𝑦
∗, 𝑔22 =

𝑎𝜃𝑧∗𝑦∗

(𝑎 + 𝑣∗)2
, 𝑔23 =

𝜃𝑦∗

𝑎 + 𝑦∗
, 

𝑔31 =
𝑎𝑐𝛼𝑧∗

(𝑎 + 𝑢𝑥∗ + 𝑣𝑦∗)2
, 𝑔32 =

𝑎𝑐𝜃𝑧∗

(𝑎 + 𝑦∗)2
, 𝑔33 = 0. 

The characteristic equation of the above Jacobian matrix is provided by 

                           𝜆3 + 𝐸𝜆2 + 𝐹𝜆 + 𝐺 = 0.                      (4) 
Where,  

𝐸 = −𝑔11 − 𝑔22, 
                                                             𝐹 = −𝑔31𝑔13 + 𝑔22𝑔11, 
𝐺 = 𝑔13𝑔31𝑔12. 
 

According to Routh-Hurwitz criteria, 

Hence,  𝐸∗ is locally asymptotically stable. 
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5. Hopf Bifurcation analysis: 

If 𝑎𝑖(𝛼) i=1,2,3 are smooth functions of m in an open interval 𝑚𝝐𝑹 such that the characteristic equation(2) 

has a pair of complex eigenvalues .The non dimensional system (3) experiences a Hopf bifurcation at the 

endemic equilibrium point 𝐸∗ when bifurcation parameter 𝛼 passes through the critical value 𝛼∗ ∈ (0,1), 
provided that the following conditions are satisfied: 

• the corresponding characteristic equation (3) of system (2) has a pair of complex conjugates  

𝜆1,2 = 𝑎 + 𝑖𝑏, where 𝑎 > 0 and one negative real root 𝜆3. 

• (
𝑑𝑚(𝛼)

𝑑𝛼
)
𝛼=𝛼∗

≠ 0. 

           Here, we give the conditions under which a Hopf bifurcation would exist as the derivative's order 

approaches a critical value at the interior equilibrium point 𝐸∗. 
 6.Numerical  Simulations: 

  In this part,we show some few numerical simulations on the system(2) to performed and    validate the 

theoretical conslusions.The rate of refuge (m),and the rate of predation on susceptible prey 𝛼 are major 

attributes used as control parameters in this study.for a given set of parameters values,numerical simulation 

is performed using the MATLAB software packages.Here a=0.2,r=0.5,d=0.1,𝜃=0.4,𝛿 =
0.1,c=0.5, 𝛼 =Variable, m=Variable. 

Effect of varying the predation rate 𝛼 

 Figure (1) &(2) demonstrates an increase in the predation rate 𝛼 decrease the population of infected prey 

and increase the predator population. 

 
Figure 1: The population concentrations of  infected  prey population at system (2) equilibrium 

point 𝐸2 and 𝛼=0.08, 0.12, 0.16, 0.2. 
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Figure 2: The population concentrations of predators population at system (2) 

equilibrium point 𝐸2 and for 𝛼=0.08, 0.12, 0.16, 0.2 

 

Effect of varying the refuge constant m 

 Figure (3) & (4) the density of the population of susceptible prey decreases as the refuge constant 

increases,we also an increase in the population of infected prey as the refuge constant increases from 0.1 

to 0.3 

 
Figure 3:  The population concentrations  of susceptible prey population at system (2) 

equilibrium point 𝐸2. and m=0.08,0.14,0.2,0.26 
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Figure 4:  The population concentrations  of  infected prey population at system (2) 

equilibrium point 𝐸2 and m=0.08,0.14,0.2,0.26 

 
Figure 5:  Bifurcation diagram at equilibrium point 𝐸∗ of system (2) on the susceptible prey population. 



167                                                        JNAO Vol. 15, Issue. 2, No.1 :  2024 

 
Figure 6:  Bifurcation diagram at equilibrium point 𝐸∗ of system (2) on the infected 

prey population. 

 
Figure 7:  Bifurcation diagram at equilibrium point 𝐸∗ of system (2) on the predator 

                   population. 

 

Conclusion: 

    In the paper,we have developed a prey-predator model where only the prey population is being 

subjected to harvesting and the predator species is subjected to intra specific competition while both are 
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under the effect of Beddington-DeAngelis functional response.Then we have discussed the dynamical 

behaviors of the system at various equilibrium points and their stability which are very similar to those of 

some recent research works. 

   The major difference between ourwork and the other recent work done is the incorporation of 

Beddington-DeAngelis functional response on a harvested prey species and a predator species under the 

effort of intra specific completion thereby enriching the dynamics of the system.we have further 

investigated the condition for limitcycle to arise by Hopfbifurcation. 

   In practice,multi-species system often exhibits more complex dynamical behaviors.For such system,we 

believe that there may be some similar results,which is interesting and left to our future work. 
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